Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration.

نویسندگان

  • Eric A Andreasen
  • Lijoy K Mathew
  • Christiane V Löhr
  • Rachelle Hasson
  • Robert L Tanguay
چکیده

Adult zebra fish completely regenerate their caudal (tail) fin following partial amputation. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits this regenerative process. Proper regulation of transcription, innervation, vascularization, and extracellular matrix (ECM) composition is essential for complete fin regeneration. Previous microarray studies suggest that genes involved in ECM regulation are misexpressed following activation of the aryl hydrocarbon receptor. To investigate whether TCDD blocks regeneration by impairing ECM remodeling, male zebra fish were i.p. injected with 50 ng/g TCDD or vehicle, and caudal fins were amputated. By 3 days postamputation (dpa), the vascular network in the regenerating fin of TCDD-exposed fish was disorganized compared to vehicle-exposed animals. Furthermore, immunohistochemical staining revealed that axonal outgrowth was impacted by TCDD as early as 3 dpa. Histological analysis demonstrated that TCDD exposure leads to an accumulation of collagen at the end of the fin ray just distal to the amputation site by 3 dpa. Mature lepidotrichial-forming cells (fin ray-forming cells) were not observed in the fins of TCDD-treated fish. The capacity to metabolize ECM was also altered by TCDD exposure. Quantitative real-time PCR studies revealed that the aryl hydrocarbon pathway is active and that matrix-remodeling genes are expressed in the regenerate following TCDD exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aryl hydrocarbon receptor activation inhibits regenerative growth.

There is considerable literature supporting the conclusion that inappropriate activation of the aryl hydrocarbon receptor (AHR) alters cellular signaling. We have established previously that fin regeneration is specifically inhibited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in adult zebrafish and have used this in vivo endpoint to evaluate interactions between AHR and growth-controlling pa...

متن کامل

Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish.

Previous studies have demonstrated that acute exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by injection leads to inhibition of caudal fin regeneration in zebrafish. Since the TCDD exposure in these studies is systemic, it is possible that pathology in organs other than the fin could result in inhibition of fin regeneration. Therefore, histopathology of adult zebrafish (Danio rerio) or...

متن کامل

2,3,7,8-tetrachlorodibenzo-p-dioxin inhibits zebrafish caudal fin regeneration.

Adult zebrafish completely regenerate their caudal fins following partial amputation. Fin regrowth can easily be monitored in vivo and regenerating tissues can be used to study this dynamic developmental process. In this study we determined that fin regeneration is significantly affected by exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Zebrafish caudal fins were partially amputated, a...

متن کامل

Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis

The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (...

متن کامل

Regenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation.

Adult zebrafish can completely regenerate their caudal fin following amputation. This complex process is initiated by the formation of an epithelial wound cap over the amputation site by 12 h post amputation (hpa). Once the cap is formed, mesenchymal cells proliferate and migrate from sites distal to the wound plane and accumulate under the epithelial cap forming the blastemal structure within ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2007